
NASA Contractor Report

ICASE Report No. 93-59

191520

IC S 2O
Years of

Excellence

A DATA DISTRIBUTED PARALLEL ALGORITHM

FOR RAY-TRACED VOLUME RENDERING

Kwan-Liu Ma

James S. Painter

Charles D. Hansen

Michael F. Krogh

NASA Contract No. NAS 1-19480

August 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

I
,#

Z

I.-

0

U
C

Op'-

C

_u.

_Z

.dc_j

Z ¢_.
.,.Jw
cu_
,.J rr_
...Iw

o.,_X

o_0
r.._uJ 0 b._

I.

IM

,0

o

A Data Distributed, Parallel Algorithm for

Ray-Traced Volume Rendering

Kwan-Liu Ma t

ICASE, NASA Langley Research Center

James S. Painter

Department of Computer Science, University of Utah

Charles D. Hansen

Michael F. Krogh

Advanced Computing Laboratory, Los Alamos National Laboratory

Abstract

This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image

compositing method, along with their implementation and performance on the Connection Machine

CM-5, and networked workstations. This Mgorithm distributes both the data and the computations to

individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume

data, once distributed, is left intact. The processing nodes perform local raytracing of their subvolume

concurrently. No communication between processing units is needed during this locally ray-tracing

process. A snbimage is generated by each processing unit and the final image is obtained by compositing

subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a

group of networked workstations demonstrate the practicality of our rendering algorithm and compositing

method.

1This research was supported in part by the National Aeronautics and Space Administration under NASA contract

NASl-19480 while the author was in residence at the Institute for Computer Application in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

Existing volume rendering methods, though capable of making very effective visualizations, are very

computationally intensive and therefore fail to achieve interactive rendering rates for large data sets.

Although the computing technology continues to advance, the increase in computer processing power

has never seemed to catch up with the increase in data size. Our work was motivated by the following

observations: First, volume data sets can be quite large, often too large for a single processor machine

to hold in memory at once. Moreover, high quality volume renderings normally take minutes to hours

on a single processor machine and the rendering time usually grows linearly with the data size. To

achieve interactive rendering rates, users often must reduce the original data, which produces inferior

visualization results. Second, many acceleration techniques and data exploration techniques for volume

rendering trade memory for time, which results in another order of magnitude increase in memory use.

Third, motion is one the most effective visualization techniques, but an animation sequence of volume

visualization normally takes hours to days to generate. Finally, we notice the availability of massively

parallel computers and the hundreds of high performance workstations in our computing environment.

These workstations are frequently sitting idle for many hours a day. All the above lead us to investigate

ways of distributing the increasing amount of data as well as the time-consuming rendering process to

the tremendous distributed computing resources available to us.

In this paper, we describe the resulting parallel volume rendering algorithm, which consists of two

parts: parallel ray-tracing and parallel compositing. In our current implementation on the CM-5 and

networked workstations, the parallel volume renderer evenly distributes data to the computing resources

available. Without the need to communicate with other processing units, each subvolume is ray-traced

locally and generates a partial image. The parallel compositing process then merges all resulting partial

images in depth order to achieve the complete image. The compositing process is particularly effective for

massively parallel processing as it always makes use of all processing units by continuously subdividing

the partial images and distributing them to each processing unit. Our test results on both the CM-5

and workstations are promising, and expose different performance tuning issues for each platform.

2 Previous Work

An increasing number of parallel architectures and algorithms for volume rendering have been developed.

The major algorithmic strategy for parallelizing volume rendering is the divide-and-conquer paradigm.

The volume rendering problem can be subdivided either in data space or in image space. While data-

spacesubdivisionassignsthe computationassociatedwith particularsubvolumesto processors,image-

spacesubdivisiondistributesthe computationassociatedwith particular portionsof the imagespace.

Data-spacesubdivisionis usuallyappliedto a distributed-memoryparallel computingenvironment.

On the otherhand,image-spacesubdivisionis simpleand efficientfor shared-memorymultiprocessing.

Hybrid methodsarealsofeasible.

Amongtheparallelarchitecturesdevelopedwhicharecapableofperforminginteractivevolumerender-

ing, thePixel-Planes5 system[5] is a heterogeneousmultiprocessorgraphicssystemusingboth MIMD

and SIMD parallelism. The hardwareconsistsof multiple i860-basedGraphicsProcessors,multiple

SIMDpixel-processorsarrayscalledRenderers,anda conventional1280×1024-pixelframebuffer,inter-

connectedby a five-gigabitring network. In [24],variationsof parallelvolumerenderingimplemented

on this systemare presented.Oneapproachsimilar to the ideaweproposedearlier in [12]and now

elaboratein this paper,distributesdataaswellasray castingamongseparateGraphicsProcessorsand

reconstructsthe ray segmentsinto coherentrays.Incorporatingdynamicloadbalancing,lookup tables

and progressiverefinement,this approachcan rendershadedimagesfrom 128×128×56volumedata

at 20 framesper second.In the followingsections,wesurveymostrecentresearchresultsfrom other

algorithmicapproaches.

2.1 Montani

Montaniet al. [14] proposea hybrid ray-tracedmethodfor running on distributed-memoryparallel

systemslike a nCUBE, in which processingnodesareorganizedinto a set of clusters, each of them

composed of the same number of nodes. The image space is partitioned and a subset of pixels is assigned

to each cluster, which will compute pixel values independently. Data to be visualized is replicated in

each cluster, and is partitioned among the local memory of the duster's nodes. A static load balancing

strategy based on estimated work load of each processor is used to improve efficiency, and on average

a twenty percent speedup in rendering time can be obtained. In addition, a mechanism for preventing

deadlock is necessary to handle the dependency between processing nodes in the same cluster. The

best efficiency reported by the authors while using a single cluster of 128 nodes is 0.74. However, when

increasing the number of clusters, the efficiency drops significantly. For example, using 16 clusters with

8 nodes per cluster, the efficiency reported is only 0.31.

2.2 Nieh

Nieh and Levoy [15]implementray-tracedvolumerenderingon StanfordDASH Multiprocessors,a

scalableshared-memoryMIMD machine. Their method employsalgorithmicoptimizationssuchas

hierarchicalopacityenumeration,earlyray termination,and adaptiveimagesampling[9]. The shared-

memoryarchitectureproviding a singleaddressspaceallowsstraightforwardimplementations. The

parallelalgorithmdistributesvolumedata in an interleavedfashionamongthe local memoriesto avoid

hot spotting. The ray tracing computationis distributedamongthe processorsby partitioning the

imageplane into contiguousblocksand eachprocessoris statically assignedan imageblock. Each

blockis further dividedinto squareimagetiles for loadbalancingpurposes.Whena processoris done

computingits block,insteadof waiting,it stealstiles from aneighboringprocessor'sblockto keepitself

busy.Experimentresultsshowthis loadbalancingschemecuts the variationof executiontimesacross

the48processorsusedby 90%.Currently,eachprocessorin DASHis a 33MHz MIPSR3000.Usingall

48processorsavailable,a 416×416-pixelimagefor a 2563data setcanbegeneratedin subseconds;for

nonadaptivesampling,the speedupoveruniprocessorrenderingis 40.

2.3 SchrSder

Schr6der and Stoll [19] develop a data-parallel ray-traced volume rendering algorithm that exploits

ray parallelism. They describe the ray tracing steps as discrete line drawing. This algorithm is both

more memory efficient and less communications bound than an algorithm introduced earlier by the first

author [18]. They have implemented this algorithm on both the Connection Machine CM-2 and the

Princeton Engine, which consists of 2048 16-bit DSP processors arranged in a ring. To allow for a SIMD

implementation, rays initially enter only the front-most face of the volume and proceed in lock step.

Consequently, each sample has the same local coordinates in a voxel. When rays exit the far face, a

toroidal shift of the data is performed and new rays are initialized to enter the visible side face of the

volume. As a result, the rotation angle selected influences about 10% of the runtime of the algorithm.

Tests using a 1283-voxel data set on both the CM2 from 8K to 32K processors in size and the Princeton

Engine of 1024 processors show subsecond rendering time.

2.4 VSzina

V6zina, et al. [22] implement a multi-pass algorithm similar to Schr6der's on MP-1, which is a massively

data-parallel SIMD computer with a 2D array of processing elements (PEs). Their algorithm, based

on work done by Catmull and Smith [2], and Hanrahan [7], converts both 3D rotation and perspec-

tive transformationsinto only four 1Dshear/scMepasses,comparedto SchrSder'seight-passrotation

algorithmcomposedexclusivelyof shearoperations.Volumetranspositionis thenperformedto localize

data access.MP-1 providesa globalrouter whichallowsefficientmovingof databetweenPEs. On a

16K-PEMP-1, a 128x128-pixelvolumerenderedimageof a 1283-voxeldatacanbegeneratedin sub-

seconds.However,it seemsthat if either asmallernumberof PEsor largerdatasetsareused,the data

transpositiontimecandegradethe performancesignificantly.

3 A Divide-and-Conquer Algorithm

The idea behind our algorithm is very simple: divide the data up into smaller subvolumes distributed

to multiple computers, render them separately and locally, and combine the resulting images in an

incremental fashion. While multiple computers are available, ' the memory demands on each computer

are modest since each computer need only hold a subset of the total data set. This approach can be used

to render high resolution data sets in an environment, for example, with many midrange workstations

(e.g. equipped with 16MB memory) on a local area network. Many computing environments have

an abundance of such workstations which could be harnessed for volume rendering provided that the

memory usage on each machine is reasonable.

3.1 Ray-Traced Volume Rendering

The starting point of our algorithm is the volume ray-tracing technique presented by Levoy [8]. An image

is constructed in image order by casting rays from the eye through the image plane and into the volume

of data. One ray per pixel is generally sufficient, provided that the image sample density is higher than

the volume data sample density. Using a discrete rendering model, the data volume is sampled at evenly

spaced points along the ray, usually at a rate of one to two samples per voxel. At each sample point on

the ray, a color and an opacity are computed using trilinear interpolation from the data values at each

of the eight nearest voxels.

The color is assigned by applying a shading function such as the Phong lighting model. A color map

is often used to assign colors to the raw data values. The normalized gradient of the data volume can

be used as the surface normal for shading calculations. The opacity is derived by using the interpolated

voxel values as indices into an opacity map. Sampling continues until the data volume is exhausted or

until the accumulated opacity reaches a threshold cut-off value. The final image value corresponding to

each ray is formed by compositing, front-to-back, the colors and opacities of the sample points along the

ray. The color/opacity compositing is based on Porter and Duff's over operator [17]. It is easy to verify

4

that the over is associative; that is,

a over (b over c) = (a over b) over c.

The associativity of the over operator allows us to break a ray up into segments, process the sampling

and compositing of each segment independently, and combine the results from each segment via a final

compositing step. This is the basis for our parallel volume rendering algorithm.

3.2 Data Subdivision/Load Balancing

The divide-and-conquer algorithm requires that we partition the input data into subvolumes. There are

many ways to partition the data; the only requirement is that an unambiguous front-to-back ordering

can be determined for the subvolumes to establish the required order for compositing subimages. Ideally

we would like each subvolume to require about the same amount of computation. In practice, this

is generally not something that we can always control well. For example, if the viewpoint is known

and fixed, we could partition the volume in a manner that minimizes the overlap between the images

resulting from the subvolumes. This will reduce the cost of the merging since compositing need only

be applied where subimages overlap as shown later. For an animation sequence, this technique can not

be applied since the viewpoint changes with each frame. We can also partition the volume based on

an estimation of the distribution of the amount of computation within the volume by preprocessing the

volume to identify high gradient regions or empty regions. In addition, we may partition and distribute

the volume according to the performance of individual computers when using a heterogeneous computing

environment.

The simplest method is probably to partition the volume along planes parallel to the coordinate planes

of the data. Again, if the viewpoint is fixed and known when partitioning the data, the coordinate plane

most nearly orthogonal to the view direction can be determined and the data can subdivided into "slices"

orthogonal to this plane. When orthographic projection is used, this will tend to produce subimages

with little overlap. If the view point is not known, or if perspective projection is used, it is better to

partition the volume equally along all coordinate planes. This can be accomplished using a k-D tree

structure [1], with alternating binary subdivision of the coordinate planes at each level in the tree as

indicated in Figure 1. As shown later, this structure provides a nice mechanism for image compositing.

As shown in Figure 2, when a volume of grid points (voxels) is evenly subdivided into, for example,

two subvolumes, each subvolume may contain half of the total grid points. Note that each voxel is

located at a corner of the grid. Consequently, those ray samples that lie in the cut boundary region (the

5

\ o,,oo/ \

/\ /\/\ /\
Figure 1: k-Dtree Subdivision of a Data Volume

dotted region) are lost. If the view vector is parallel to the cut plane, a black strip will appear at each

cut boundary in the composited image. In order to avoid this problem, we need to replicate one layer

of the boundary grid at each subvolume so the composited ray-casting image does not drop out features

originally in the volume. For the case shown in Figure 2, one possible arrangement is that Subvolume 1

includes layer 1 to layer k and Subvolume 2 includes layer k to layer n; that is, in Subvolume 2, layer k

is replicated.

3.3 Parallel Rendering

We use ray-casting based volume rendering. Each computer can perform raytracing independently; that

is, there is no data communication required during the subvolume rendering. All subvolumes are rendered

using an identical view position and only rays within the image region covering the corresponding

subvolume are cast and sampled. Since we sample along each ray at a predetermined interval, consistent

sampling locations must be ensured for all subvolumes so we can reconstruct the original volume. As

shown in Figure 3, for example, the location of the first sample $2(1) on the ray shown in Subvolume

2 should be calculated correctly so that the distance between $2(1) and Sl(n) is equivalent to the

predetermined interval. Otherwise, small features in the data might be lost or enhanced in an erroneous

way.

6

1 k k+l n

Subvolume

IfllIl_llllll!

Subvolume 2

Figure 2: Volume Boundary Replication.

EYE

Subvolume 1 Subvolume 2

Sl(n- S2{1)

St(n)

Figure 3: Correct Ray Sampling.

3.4 Image Composition

The final step of our algorithm is to merge ray segments and thus all partial images into the final total

image. In order to merge, we need to store not only the color at each pixel but also the accumulated

opacity there. As described earlier, the rule for merging subimages is based on the over compositing

operator. When all subimages are ready, they are composited in a front-to-back order. For a straight-

forward one-dimensional data partition, this order is also straightforward. When using the k-D tree

structure, this front-to-back image compositing order can then be determined hierarchically by a recur-

sive traversal of the k-D tree structure, visiting the "tront" child before the "back" child. This is similar

to well known front-to-back-traversais of BSP-trees [4] and octrees [3]. In addition, the hierarchical

structure provides a natural way to accomplish the compositing in parallel: sibling nodes in the tree

may be processed concurrently:

A naive approach for merging the partial images is to do binary compositing. By pairing up computers

in order of compositing, each disjoint pair produces a new subimage. Thus after the first stage, we are

left with the task of compositing only _ subimages. Then we use half the number of the original

computers, and pair them up for the next level compositing. Continuing similarly, after log n stages,

the final image is obtained. One problem for the above methods is that during the compositing process

compositing, many computers become idle. At the top of the tree, only one processor is active, doing

the final composite for the entire image. When running on a massively parallel computer like CM-5

with thousands of processors, this would significantly affect the overall performance; consequently, the

compositing process would become a bottleneck when interactive rendering rates are desired. To avoid

this problem, we have generalized the binary compositing method so that every processor participates

in all the stages of the compositing process. We call the new scheme binary-swap compositing. The key

idea is that, at each compositing stage, the two processors involved in a composite operation split the

image plane into two pieces and each processor takes responsibility for one of the two pieces.

In the early phases of the algorithm, each processor is responsible for a large portion of the image

area, but the image area is usually sparse since it includes contributions only from a few processors.

In later phases, as we move up the compositing tree, the processors are responsible for a smaller and

smaller portion of the image area, but the sparsity decreases since an increasing number of processors

have contributed image data. At the top of the tree, all processors have complete information for a small

rectangle of the image. The final image can be constructed by tiling these subimages onto the display.

Figure 4 illustrates the binary-swap compositing algorithm graphically for four processors. When all

8

four computersfinish ray-tracinglocally,eachcomputerholdsa partial image, as depicted in (a). Then

each partial image is subdivided into two half-images by splitting along the X axis. In our example, as

shown in (b), Computer 1 keeps only the left half-image and sends its right half-image to its immediate-

right sibling, which is Computer 2. Conversely, Computer 2 keeps its right half-image, and sends its

left half-image to Computer 1. Both computers then composite the half image they keep with the half

image they receive. A similar exchange and compositing of partial images is done between Computer

3 and 4. After the first stage, each computer only holds a partial image that is half the size of the

original one. In the next stage, Computer 1 alternates the image subdivision direction. This time it

keeps the upper half-image and sends the lower half-image to its second-immediate-right sibling, which

is Computer 3, as shown in (c). Conversely, Computer 3 trades its upper half-image for Computer l's

lower half-image for compositing. Concurrently, a similar exchange and compositing between Computer

2 and 4 are done. After this stage, each computers hold only one-fourth of the original image. For this

example, we are done and each computer sends its image to the display device. The final composited

image is shown in (d). It has been brought to our attention that a similar merging algorithm has been

developed independently by Mackerras [13].

Figure 5 shows the psuedo code of the same compositing algorithm when the number of processors

(nproc) is a perfect power of two. We assume that processors are numbered from 0 to nproc-1 and

that self is an integer containing the current processor number. There are log2(nproc) phases and a

phase corresponding to each level in the compositing tree. During each phase, each processor exchanges

data with its partner that is stride away from it. The stride value steps from 1 up to _ in powers

of 2.

In our current implementation, the number of processors (nproc) must be a perfect power of two. This

simplifies the calculations needed to identify the compositing partner at each stage of the compositing tree

and ensures that all processors are active at every compositing phase. The algorithm can be generalized

to relax this restriction if the compositing tree is kept as a full (but not necessarily complete) binary

tree, with some additional complexity in the compositing partner computation and with some processors

remaining idle during the first compositing phase.

4 Implementation of the Renderer

We have implemented two versions of our distributed volume rendering algorithm: one on the CM-5 and

another on groups of networked workstations. Our implementation is composed of three major pieces

9

L1 R1

LI+L2

!
_ T1

..... B1

L2

N
R2

(a)

RI+R2

L3 R3

L3+L4

T3

B3

IA R4

R3+R4

TI+T3

Upper-Left

(b)

T2+T4

Upper-Right

B I+B3

Lower-Left
(c)

(d)

Figure 4: Parallel Compositing Process.

B2+B4

Lower-Right

10

Initialize image plane to entire image;

for(stride=l; stride<nproe; stride • = 2)

(
partner = self XOR stride;

Subdivide image plane;

Exchange image data with partner;

Composite our part of the remaining
image plane with partners image data;

)

Figure 5: Psuedo Code for Binary-Swap Compositing

of code: a data distributor, a renderer, and an image compositor. Currently, the data distributor is a

part of the host program which reads data piece by piece from disk and distributes to each machine

participating. Alternatively, each node program could read their piece from disk directly.

The renderer implements a conventional ray-traced volume rendering algorithm [8] using a Phong

lighting model [16]. Our renderer is a basic renderer and is not highly tuned for best performance.

Compared to a performance tuned ray-traced volume rendering program we implemented previously [10],

we estimate that the current implementation of the renderer can be further improved in speed by 10-15%.

In fact, data dependent optimization methods might affect load balancing decisions by accelerating the

progress on some processors more than others. For example, a processor tracing through empty space

will probably finish before another processor working on a dense section of the data. We are currently

exploring data distribution heuristics that can take the complexity of the subvolumes into account when

distributing the data to ensure equal load on all processors.

For shading the volume, surface normals are approximated as local gradients using central differencing.

We trade memory for time by precomputing and storing the three components of the gradient at each

voxel. As an example, for a data set of size 256×256×256, more than 200 megabyte are required to store

both the data and the precomputed gradients. This memory requirement prevents us from sequentially

rendering this data set on most of our workstations.

4.1 CM-5 and CMMD 3.0

The CM-5 is a massively parallel supercomputer which supports both the SIMD and MIMD programming

models [20]. The CM-5 in the Advanced Computing Laboratory at Los Alamos National Laboratory

has 1024 nodes, each of which is a Sparc microprocessor with 16MB of local RAM and four 64-bit wide

11

vectorunits. With four vectorunitsup to 128operationscanbeperformedby a singleinstruction.This

yieldsatheoreticalspeedof 128GFlopsfor a 1024-nodeCM-5. The nodes can be divided into partitions

whose size must be a power of two. A user's program is constrained to operating within a partition.

Our CM-5 implementation of the parallel volume renderer takes advantages of the MIMD progranuning

features of the CM-5. MIMD programs use CMMD, a message passing library for communications and

synchronization, which supports either a hostless model or a host/node model [21].

We choose the host/node programming model of CMMD because we wanted the option of using X-

windows to display directly from the CM-5. The host program determines which data-space partitioning

to use, based on the number of nodes in the CM-5 partition, and sends this information to the nodes. The

host then optionally reads in the volume to be rendered and broadcasts it to the nodes. Alternatively, the

data can be read directly from the DataVault or Scalable Disk Array into the nodes local memory. The

host then broadcasts the opacity/colormap and the transformation information to the nodes. Finally,

the host performs an I/O servicing loop which receives the rendered portions of the image from the

nodes.

The node program begins by receiving its data-space partitioning information and then its portion of

the data from the host. It then updates the transfer function and the transform matrices. Following this

step, the nodes all execute their own copy of the renderer. They synchronize after the rendering and

before entering the compositing phase. Once the compositing is finished, each node has a portion of the

image that they then send back to the host for display.

4.2 Networked Workstations and PVM 3.1

Unlike a massively parallel supercomputer dedicating uniform and intensive computing power, a network

computing enviromnent provides nondedicated and scattered computing cycles. Thus, using a set of high

performance workstations connected by an Ethernet, our goal is to set up a volume rendering facility for

handling large data sets and batch animation jobs. That is, we hope that by using many workstations

concurrently, the rendering time will decrease linearly and we will be able to render data sets that are

too large to render on a single machine. Note that real-time rendering is generally not achievable in such

environment.

We use PVM (Parallel Virtual Machine) [6], a parallel program development enviromnent, to imple-

ment the data communications in our algorithm. PVM allows us to implement our algorithm portably

for use on a variety of workstation platforms. To run a program under PVM, the user first executes a

daemon process on the local host machine, which in turn initiates daemon processes on all other remote

12

machinesused. Then the user's application program (the node program), which should reside on each

machine used, can be invoked on each remote machine by a local host program via the daemon pro-

cesses. Communication and synchronization between these user processes are controlled by the daemon

processes, which guarantee reliable delivery.

A host/node model has also been used. As a result, the way it has been implemented is very similar to

that of CM-5's. In fact, the only distinct difference between the workstation's and CM-5's implementation

(source program) is the communication calls. Basically, for most of the basic communication functions,

PVM 3.1 and CMMD 3.0 have one-to-one equivalence.

5 Tests

We used three different data sets for our tests. The vorticity data set is a 256×256×256 voxel CFD data

set, computed on a CM-200, showing the onset of turbulence. The head data set is the now classic UNC

Chapel Hill CT head at a size of 128×128×128. The vesseldata set is a 256x256×128 voxel Magnetic

Resonance Angiography (MRA) data set showing the vascular structure within the brain of a patient.

All test results are presented graphically with the discussion. Tables of actual numbers are placed in

Appendices to this paper for interested readers. Figure 6 illustrates the compositing process described in

Figure 4, using the images generated with the vessel data set. Similarly, each column shows the images

from one processor, while the rows are the phases of the compositing algorithm. The final image is

displayed at the bottom.

5.1 CM-5

We performed multiple experiments on the CM-5 using partition sizes of 32, 64, 128,256 and 512. When

these tests were run, a 1024 partition was not available. Timing results are shown in Figure 7, 9 and 11 for

the head, vessel and vorticity data sets respectively. The times shown in graphs (and tables in Appendix

A) are the maximum times for all the nodes for the two steps of the core Mgorithm: the rendering step

and the compositing step. All times are given in seconds. The corresponding speedup graphs are shown

in Figure 8, 10, and 12. Note that the speedup was also'measured for the core algorithm and it is a

function of the 32 node running time.

Looking at Figure 7, 9 and 11, it is easy to see that rendering time dominates the process. It should be

noted that this implementation does not take advantage of the CM-5 vector units. We expect much faster

computation rates in the renderer when the vectorized code is completed. As there is no communication

in the rendering step, one might expect linear speedup when utilizing more processors. As can be seen

13

Figure6: Illustrationof the Parallel hnage Compositing Process using the Vessel Data Set. Each column

shows the images from one processor, while the rows are the phases of the compositing algorithm. The

final image is displayed at the bottom.

14

from the threespeedupgraphs,this is not alwaysthe casedue to the load balanceproblems. The

vorticity data set is relatively dense (i.e. it contains few empty voxels) and therefore exhibits nearly

linear speedup. On the other hand, both the head and the vessel data sets contain many empty voxels

which unbalance the load and therefore do not exhibit the best speedup. Figure 12 demonstrates that

for the vorticity data set, our implementation achieves very good speedup for all image sizes except

64×64. The rendering of the 64×64 image exhibits less speedup than larger image sizes due to overhead

costs associated with the rendering and compos_ting steps. In particular, the compositing step showed

a speedup of only 1.46 when going from 32 nodes to 512 nodes. For all image resolutions above 64×64,

the overall speedup was nearly the same.

The compositing stage requires communication between pairs of nodes to perform the actual com-

positing. In the case of the vorticity data set, Figure 13 shows the compositing time in solid lines and

the compositing time with the communication time removed in dotted lines for different sized CM-5

partitions. The communication time varied from about 10 percent to about 3 percent of the total corn-

positing time. As the image size increases, both the compositing time and the communication time also

increase. For a fixed image size, increasing the partition size lowers the communication time because

each node contains a proportionally smaller piece of the image.

We also measured the data distribution time and image gathering time. The data distribution time

includes the time it takes to read the data over NFS at Ethernet speeds on a loaded Ethernet. The

image gathering time is the time it takes for the nodes to send their composited image tiles to the host.

While other partitions were also running, the data distribution time could vary dramatically due to

the disk and Ethernet contention. Taking the vorticity data set as an example, the distribution data

varied from 40 to 90 seconds regardless of the partition size. For the above tests, a 64×64 image can be

gathered within 0.01 seconds and a 512x512 image within 1 second. For the same image size, the image

gathering time is only slightly slower for larger partitions which have more image-tiles. Both of the data

distribution time and image gathering time will be mitigated by use of the parallel storage and the use

of the HIPPI frame buffer.

5.2 Networked Workstations

For our workstation tests, we used a set of 32 high performance workstations. The first four machines

were IBM RS/6000-550 workstations equipped with 512 MB of memory. These workstations are rated

at 81.8 SPECfp92. The next 12 machines were HP9000/730 workstations, some with 32 MB and others

with 64 MB. These machines are rated at 86.7 SPECfp92. The remaining 16 machines were Sun Sparc-

15

Time

(see)

40

35

3O

25

2O

15

10

5

0

I I I I I

render+composite 842 _--1282

\ 2562

\ 5122 -e--
\ render only 642 "_'"
_, 1282 .rn. -

2562 .A.-

_ __ __-
I I I I I

0 32 64 128 256 512
Number of Processors

Figure 7:CM-5 Times for the Head Data, Set.

16[,, , , f
14 _ Ideal _ ._" -

/ 64x64 -O'-
[_ 128x128 _

12 [256×256 _

10

Speedup 8

6

4

2

0 ! I I I I

0 32 64 128 256 512
Number of Processors

Figure 8:CM-5 Speedup for tile Head Data Set.

16

Time

(sec)

3O

25

2O

15

10

0

0

I I I I I

render+composite 642
1282 -_-
2562 4h-

\ 5122 -o--
\ render only 642 ._--
\ 1282 .1:3.-
\ 2562 .A.-

5122 .o. -

[]] I I

32 64 128 256 512
Number of Processors

Figure 9:CM-5 Times for the Vessel Data Set.

Speedup

16

14

12

10

8

6

4

2

0
0

I I I I

Ideal 1

64x64 "0"--
128x 128 _
256x256 _-- / -_

_1 I I I I

32 64 128 256 512
Number of Processors

Figure 10:CM-5 Speedup for the Vessel Data Set.

17

Time

(sec)

5O

4O

3O

2O

10

0

0

I ! I _ I

render+composite 645
\ 128 _ 4B--
\ 2562

\ 5122 -o--
render only 64 _ "_'"

\ 1282 .13. -
\ 2562 .A.-

5122 .o. -

32 64 128 256 512
Number of Processors

Figure 11:CM-5 Times for the Vorticity Data Set.

16

14

12

10

Speedup 8

6

4

2

0

I I I I

- ,d.,- /
64×64 -O-- J ._"

128x128 43-- ./ ._" ._

f I I I l I

0 32 64 128 256 512
Number of Processors

Figure 12:CM-5 Speedup for the Vorticity Data Set.

18

Time

(sec)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

I I I I I /

gk composite 642
\ 128 _

o..\ 2562 _ ,

"o_. 5122
'..x_, composite - communication 64 _ ._). -

'..':_ 1282 .[3. -
• _ 2562 .A. -

0 32 64 128 256 512
Number of Processors

Figure 13:CM-5 Compositing/Communication Times for the Vorticity Data Set.

10/30 workstations equipped with 32 MB, which are rated at 45 SPECfp92. The tests on one, two and

four workstations used only the IBM's because of their memory capacity. The tests with eight and 16

used a combination of the HP's and IBM's. The 16 Sun's were used for the tests on 32. It was not

possible to assure absolute quiescence on each machine because they are in a shared environment with

a large shared Ethernet and files systems. During the period of testing there was network traffic from

network file system activity and across-the-net tape backups. In addition, a few workstations lie on

different subnets. Thus the communication performance was little difficult to characterize.

The actual numbers of the test results are provided in Appendix B. We display the same information

graphically in Figure 14, 15 and 16 for the head, vessel and vorticity data sets, respectively. In a

heterogeneous environment, it is less meaningful to use speedup graphs to study the performance of our

algorithm and implementation so speedup graphs are not provided.

From the test results, we see that the rendering time still dominates when using eight or fewer

workstations. It is also less beneficial to render smaller images due to the overhead costs associated

with the rendering and compositing steps. Unlike the CM-5's results, tests on workstations show that

the communication component is the dominant factor in the compositing costs. On the average, as

shown in Figure 17, communication takes about 97% of the overall compositing time. This can be seen

19

by comparing the solid lines with the dotted lines in the graph. For the CM-5, a large partition improves

the overal] communications time because not only each node then cont_ns a proportionally smaller piece

of the image but also the network bandwidth scales with the partition size on the CM5. However, this

is not true for the networked workstations because the ethernet bandwidth used with PVM is fixed.

For large images (e.g. 512x512), considering the Ethernet speed, it seems worthwhile to compress the

subimages used in the swapping process. We have incorporated a compression program into the renderer

by using an algorithm described in [23]. In Figure 18, results for the vorticity data set at an image size of

512x5t2 are shown. Apparently, compressing the subimages before swaps helps reduce the compositing

cost significantly, especially when more workstations were used. For example, in the 32-workstation

case, the total compositing time for one workstation was about 1.465 seconds including 0.042 seconds

for the raw compositing, 0.088 seconds for the compression and 1.271 seconds for the communication.

The compression ratio was about four to one, resulting in about 80% faster communication rates. When

rendering time dominates due to either the use of slower processors or fewer processors, the compression

option is not as worthwhile.

The data distribution and image gather times also varied greatly, due to the variable load on the

shared Ethernet. The data distribution times varied from 17 seconds to 150 seconds while the image

gather times varied from an average of .06 seconds for a 64x64 image to a high of 8 seconds for a 512×512

image. The above test results were based on Version 3.1 of PVM. Our initial tests using PVM 2.4.2

show a much higher communication cost, more than 70% higher, as reported in [11].

In a shared computing environment, the communication costs are highly variable due to the use of the

local Ethernet shared with hundreds of other machines. There are many factors that we have no control

over that are influential to our algorithm. For example, an overloaded network and other users' processes

competing with our rendering process for CPU and memory usage could greatly degrade the performance

of our algorithm. Improved performance could be achieved by carefully distributing the load to each

computer according to data content, and the computer's performance as well as its average usage by

other users. Moreover, communications costs are expected to drop with higher speed interconnection

networks (e.g. FDDI) and on clusters isolated from the larger local area network.

6 Conclusions

We have presented a parallel volume ray-tracing algorithm for a massively parallel computer or a set of

interconnected workstations. The algorithm divides both the computation and memory load across all

F"

2O

t

Time

(sec)

150

100

75

50-
/,

25 -

10 -r.
0 -_

I I I I I

render+composite 642 _--
1282
2562 4_-
5122 -o--

render only 642 -_>.-
1282 .o. -
2562 .A. -
5122 .o. -

Tli -l, I I

2 4 8 16 32
Number of Processors

Figure 14: PVM Results on the Head Data Set.

Time

(sec) 100

75

50

25

10
0

Ii I I I I I

200 render+composite 642 "O-- -
1282 -t9---
2562

5122 -o--

150 render only 642 .<).- -
1282 .n. -
2562 .A. -
5122 .o. -

I f l '_

0 2 4 8 16 32
Number of Processors

Figure 15: PVM Results on the Vessel Data Set.

21

Time

(sec)

_--7 _-

300

200

I00

75

50

25

0

2 4 8 16
Number of Processors

I

render+composite 642 "O--
1282
2562 _--
5122 -o--

render only 642 .<_.-
1282 .re..
2562 .A..
5122 .e. -

32

Time

(sec)

4.6

1

0.5

Figure 16: PVM Results on the Vorticity Data Set.

I !

composite 642
1282
2562
5122 -o--

)osite - communication 642 "<_"-

1282 .fT..
2562 .A..
5122 .e. -

0 2 4 8 16 32
Number of Processors

Figure 17: PVM Compositing/Communication Times for the Vorticity Data Set.

22

I ! I I I I I !

5 [- without compression 5122 "O-"

with compression 5122 ._,.-
4

]

Time _ . O.

(sec) 3 •
. .''''' "'', °

. , , . , , .

• °

1

0.5

0 I I I

0 4 8 12 16 20 24 28 32
Number of Processors

Figure 18: Comparing the Compositing Time with and without Compression using the Vorticity Data

Set.

processors and can therefore be used to render data sets that are too large to fit into the memory system

of a single uniprocessor. A parallel (binary-swap) compositing method was developed to combine the

independently rendered results from each processor. The binary-swap compositing method has merits

which make it particularly suitable for massively parallel processing. First, while the parallel compositing

proceeds, the decreasing image size for sending and compositing makes the overall compositing process

very efficient. Next, this method always keeps all processors busy doing useful work. Finally, it is simple

to implement with the use of the k-D tree structure described earlier.

The algorithm has been implemented on both the CM-5 and a network of scientific workstations. The

CM-5 implementation showed good speedup characteristics out to the largest available partition size of

512 nodes. Only a small fraction of the total rendering time was spent in communications, indicated the

success of the parallel compositing method. Several directions appear ripe for further work. The host

data distribution, image gather, and display times are bottlenecks on the current CM-5 implementation.

These bottlenecks can be alleviated by exploiting the parallel I/O capabilities of the CM-5. Rendering

and compositing times on the CM-5 can also be reduced significantly by taking advantage of the vector

units available at each processing node. We are hopeful that real time rendering rates will be achievable

at medium to high resolution with these improvements.

23

Performanceof thedistributedworkstationimplementationcouldbe further improvedby better load

balancing. In a heterogeneousenvironmentwith sharedworkstations,linear speedupis difficult. A

simpleapproachis to dostatic loadbalancing.The datasubdivisioncanbedoneunevenly,taking into

accountthe predictedcapacityoneachmachineto try to balancetheload. Alternatively,the datacan

be subdividedinto a largernumberof equalsizedsubvolumesand the morecapablemachinescanbe

assignedmorethanonesubvolume.Thelaterapproachhastheadvantagethat it canbegeneralizedto a

dynamicloadbalancingapproach:divide thedatainto manysubvolumesandassignthemto processors

in a demanddrivenfashion. Thefiner subdivisionof the datavolumeswouldimproveloadbalancing

duringrenderingat the costof someadditionalcompositingtime dueto morelevelsin thecompositing

tree.

Acknowledgments

The MRA vessel data set was provided by the MIRL at the University of Utah. The vorticity data set

was provided by Shi-Yi Chen of T-Div at Los Alamos National Laboratory. David Rich, of the ACL,

and Burl Hall, of Thinking Machines, helped tremendously with the CM-5 timings. The Alpha_l and

CSS at the University of Utah provided the workstations for our performance tests. Thanks go to Elena

Driskil] for comments on a draft of this paper. This work has been supported in part by NSF/ACERC

and NASA/ICASE.

References

[1] BENTLEY, J. Multidimensional Binary Search Trees Used for Associative Searching. Commun.

ACM i8, 8 (September 1975), 509-517.

[2] CATMULL, E., AND SMITH, A. R. 3-D Transformations of hnages in Scanline Order. 6bmputcr

Graphics 14, 3 (t980), 279-285.

[3] DOCTOR, L., AND TORBORG, J. Display Techniques for Octree-Encoded Objects. IEEE Comput.

Graphics and Appl. 1 (July 1981), 29-38.

[4] FUCHS, H., ABRAM, G., AND GRANT, E. D. Near Real-Time Shade Display of Rigid Objects. In

Proceedings of SIGGRAPH 1983 (1983), pp. 65-72.

[5] FucHs, H., POULTON, J., EYLES, J., (_REER, T., GOLDFEATHER, J., ELLSWORTH, D., _{OLNAR,

S., TURK, G., TEBBS, B., AND ISRAEL, L. Pixel-Planes 5: A Heterogeneous Mu]tiprocessor

24

GraphicsSystemUsingProcessor-EnhancedMemories.Computer Graphics 23, 3 (July 1989), 111-

120.

[6] GEIST, G., AND SUNDERAM, V. Network-based Concurrent Computing on the PVM System.

Concurrency: Practice and Experience 4, 4 (June 1992), 293-312.

[7] HANRAt]AN, P. Three-Pass Affine Transforms for Volume Rendering. Computer Graphics 24, 5

(1990). Special issue on San Diego workshop on Volume Rendering.

[8] LEVOV, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications

(May 1988), 29-37.

[9] LEVOY, M. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics 9, 3 (July

1990), 245-261.

[10] MA, K.-L., COHEN, M., AND PAINTER, J. Volume Seeds: A Volume Exploration Technique. The

Journal of Visualization and Computer Animation 2 (1991), 135-140.

[11] MA, K.-L., PAINTER, J., HANSEN, C., AND KROGH, M. A Data Distributed, Parallel Algorithm

for Ray-Traced Volume Rendering (to appear). In Proceedings of the 1993 Parallel Rendering

Symposium (October 1993).

[12] MA, K.-L., AND PAINTER, J. S. Parallel Volume Visualization on Workstations. Computers and

Graphics 17, 1 (1993).

[13] MACKERRAS, P. A fast parallel marching cubes implementation on the fujitsu apl000. Tech. Rep.

TR-CS-92-10, Department of Computer Science, Australian National University, 1992.

[14] MONTANI, C., PEREGO, R., AND SCOPIGNO, R. Parallel Volume Visualization on a Hypercube

Architecture. In 1992 Workshop on Volume Visualization (1992), pp. 9-16. Boston, October 19-20.

[15] NIEH, J., AND LEVOY, M. Volume Rendering on Scalable Shared-Memory MIMD Architectures.

In 1992 Workshop on Volume Visualization (1992), pp. 17-24. Boston, October 19-20.

[16] PHONG, B. Illumination for Computer-Generated Pictures. CACM 18, 6 (June i975), 311-317.

[17] PORTER, T., AND DUFF, T. Compositing Digital Images. Computer Graphics (Proceedings of

,gIGGRAPH 198_) 18, 3 (July 1984), 253-259.

25

[18] SCFIR(_pER, P., AND SALEM, J. B. Fast Rotation of Volume Data on Data Parallel Architectures.

In Proceedings of Visualization'91 (October 1991), pp. 50-57.

[19] SCHR6DER, P., AND STOLL, G. Data Parallel Volume Rendering as Line Drawing. In 1992

Workshop on volume Visualization (1992), pp. 25-31. Boston, October 19-20.

[20] THINKING MACHINES CORPORATION. The Connection Machine CM-5 Technical Summary, 1991.

[21] THINKING MACHINES CORPORATION. CMMD Reference Manual; Preliminary Documentation for

Version 3.0 Beta, February 1993.

[22] V_.ZlNA, G., FLETCHER, P. A., AND ROBERTSON, P. K. Volume Rendering on the MasPar MP-1.

In I992 Workshop on volume Visualization (1992), pp. 3-8. Boston, October 19-20.

[23] WILLIAMS, R. An Extremely Fast Ziv-Lempel Data Compression Algorithm. In Proceedings of

IEEE Computer Society Data Compression Conference (April 1991), J. Storer and J. Reif, Eds.

[24] Yoo, W., NEUMANN, V., FUCHS, H., PIZER, S., CULLIP, T., RHOADES, J., AND WHITAKER,

R. Direct Visualization of Volume Data. IEEE Computer Graphics and Applications (July 1992),

63-71.

P

26

=

f

Appendix A: CM-5's Test Results

size function 32 64 128

render 0.5839 0.3723 0.2071

64 x 64 composite 0.0165 0.0150 0.0133
render 2.3033 1.5393 0.8459

128x128 composite 0.0576 0.0497 0.0322
render 9.2600 6.1558 3.3663

256x256 composite 0.1679 0.1932 0.1287
render 36.3685 24.1807 13.1200

512x512 composite 0.63320 0.77810 0.47660

256

0.1043

0.0113

0.4278

0.0325

1.7344

0.1090

6.7355

0.4029

Table 1:CM-5 Results on Head Data Set

512

0.0593

0.0101

0.2223

0.0269

0.9536

0.0945

3.7107

0.3782

size function 32 64

render 0.4346 0.2627

64 x 64 composite 0.0097 0.0087
render 1.6138 0.9500

128x128 composite 0.0303 0.0237
render 6.4522 3.6532

256x256 composite 0.1146 0.0897

512x512

render

composite

26.0314

0.46060

14.9057

0.34600

128 256 512

0.1350 0.0806 0.0454

0.0085 0.0086 0.0081

0.4988 0.2643 0.1390

0.0233 0.0213 0.0167

1.8698 1.0084 0.5193
0.0835 0.0741 0.0554

7.5980 4.1720 2.2034

0.3278 0.2931 0.2167

Table 2:CM-5 Results on Vessel Data Set

size function 32 64

render 0.8038 0.3995

64 x 64 composite 0.0137 0.0125
render 3.1446 1.5974

128x128 composite 0.0473 0.0406
render 12.3345 6.3133

256x256 composite 0.1807 0.1466

512x512

render

composite

48.2005

0.71520

24.4303

0.58100

128 256 512

0.2072 0.1116 0.0597

0.0101 0.0101 0.0094

0.8247 0.4086 0.2041

0.0300 0.0279 0.0235

3.2305 1.6158 0.8063

0.1108 0.1001 0.0836

12.697 6.3434 3.1878

0.4272 0.3874 0.3310

Table 3:CM-5 Results on Vorticity Data Set

size function

64 x 64 composite
communication

128x128 composite
communication

256x256 composite
communication

512x512 composite
communication

32 64 128 256 512

0.0137 0.0125 0.0101 0.0i01 0.0094

0.0013 0.0008 0.0006 0.0005 0.0003

0.0473 0.0406 0.0300 0.0279 0.0235

0.0030 0.0026 0.0018 0.0012 0.0011

0.1807 0.1466 0.1108 0.1001 0.0836

0.0210 0.0075 0.0052 0.0037 0.0027

0.7152 0.5810 0.4272 0.3874 0.3310

0.0843 0.0231 0.0181 0.0138 0.0097

Table 4:CM-5 Compositing Communication Times for the Vorticity Data Set

27

Appendix B: Workstations' Test Results

size function 1 2 4 8 16

render 2.0980 0.9740 0.5660 0.3460 0.1740

64×64 composite 0.0010 0.0530 0.0290 0.0640 0.1820

128x128

render

composite

8.2020

0.0020

3.7500

0.1570

2.2350

0.0790

1.3250
0.1700

0.7050

0.3470

render 40.0480 18.3200 9.5340 5.5740 3.8970

256 × 256 composite 0.0070 0.4870 0.4010 0.5660 0.8860
render 133.7590 61.6390 36.7350 21.1010 10.8990

512x512 composite 0.0270 2.1550 1.0890 2.5290 3.5340

Table 5: PVM Results on the Head Data Set

32

0.0990

0.2370

0.5220

0.5210

2.4050

1.3540

8.4990

4.3550

size functi6n 1 2 4 8 16

render-- 2.7640 1.4450 0.6930 0.3890 0.1820

64×64 composite 0.0000 0.0270 0.0250 0.0660 0.1000
render 10.9180 5.7020 2.7010 1.4210 0.7030

128× 128 composite 0.0020 0.2600 0.0470 0.1320 0.1730
5.7830 3.1650
0.3900 0.5630256×256

512x512

render

composite
render

composite

43.2200

0.0050

209.5880

0.0290

22.7010

0.3170

96.7530

1.8740

10.4930
0.1440

48.8300

1.5020

25.1470

2.0170

12.7630

2.7060

Table 6: PVM Results on the Vessel Data Set

32

0.1060
0.2320

0.4110

0.2960

1.7440

0.8780

7.4140

3.2570

size

64x64

128x128

256×256

function

render

composite
render

composite
render

composite

5.4840

0.0010

2i.9080

0.0020

87.5030

0.0060

2.8160

0.1400

11.2630

0.1990

45.0680

1.1570

1.2360

0.0260

4.9940

0.0730

20.0210

0.2570

8 16 32

0.7120 0.3320 0.1800

0.0730 0.1320 0.2490
2.8i90

0.1880

11.3780

0.6130

1.2880

0.3250

5.6720

0.9270

0.8000

0.3760

3.3620

1.1640

render 350.2400 180.3180 79.4320 45.0260 20.6060 11.4680

512x512 composite 0.0280 2.1690 0.9960 2.3230 3.9720 4.5180

Table 7: PVM Results on the Vorticity Data Set

7

28

7

size function 1 2 4 8 16 32

composite 0.0010 0.1400 0.0260 0.0730 0.1320 0.2490

64×64 communications 0.0000 0.1390 0.0250 0.0720 0.1310 0.2470

composite 0.0020 0.1550 0.0730 0.i880 0.3250 0.3760
128×128 communications 0.0000 0.1500 0.0690 0.1850 0.3210 0.3690

composite 0.0060 0.561 0.2570 0.6130 0.9270 i"."16'40

256×256 communications 0.0000 1.545 0.2460 0.5990 0.9140 1.1590

compos_ite 0.0280 1.609 0.9960 2.3230 3.9720 4.5180
512×512 communications 0.0000 1.545 0.9580 2.2950 3.9380 4.4990

Table 8: PVM Compositing Communication Times on the Vorticity Data Set

size

64 × 64

128x128

256 x256

512x512

function 1 2 4 8 16 32

composite 0.0010 0.022 0.167 0.267 0.347 0.33
communications 0.0000 0.017 0.164 0.264 0.343 0.324

composite 0.0020 0.443 0.357 0.422 0.585 0.42
communications 0.0000 0.43 0.35 0.411 0.571 0.41

composite 0.0060 0.377 0.406 0.778 1.074 0.8
communications 0.0000 0.332 0.383 0.743 1.023 0.762

"composite 0.0280 0.735 0.475 2.144 3.229 1.485
communications 0.0000 0.566 0.389 2.036 3.121 1.372

Table 8: PVM Compositing Communication Times with Compression on the Vorticity Data Set

29

,,, ,,

Form ApDroved
REPORT DOCUMENTATION PAGE OM8No 0704-0188

a_her_ and rna n_a_mn_ _he data needed anO ¢c.n*p'_qq_g anO re =wE - *he "_tte_ _,_ of mt_r_a't_O_" Sen_O_ents re_aro_t_ t_,l_ Du,'den estm"a'_e c" _, ._tP'er a)oe._ OT [h_

DavlsNrghwa.,' Su,te 1204 Ari_ton E-_ 222_2-_31_. ar, dtc, tt, eO lice :t Mat_agemen'_andBuo_e: Pal_e*'_',cr_ Reou_,c-Proje::,OT_4÷_8_ _, Was ,_at3* ,._ 2_5:]

2. REPORTDATEt. AGENCY,USE ONLY (Leave blank)

,.A.u, p;ust 1993 Contractor
4. TITLE AND SUBTITLE

A DATA DISTRIBUTED PARALLEL ALGORITHM FOR RAY-TRACED

VOLUME RENDERING

i

6. "AU'rHOR($)

Kwan-Liu Ha, James S. Painter, Charles D. Hansen,

and Michael F. Krogh

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) A_iD ADDRESS(ES)

National AeronaUtics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORTTYPE AND DATES COVERED

_eoort
5. FUNDING NUMBERS

C NASI-19480

WU 505-90-52-01

8'. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-59

10. SPONSORING/ MONITORING
AGENCY REPORTNUMBER

NASA CR-191520

ICASE Report No. 93-59

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Michael F. Card

Final Report

12a. DISTRiBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categog_/ 61

13. ABSTRACT(Maximum 200 words_'""

To appear in the Proc.

of the Parallel Ren-

derln8 Symposium

12b. DISTRIBUTION CODE

This paper presents a divide-and-conquer ray-traced volume rendering algorithm and

a pa=allel image compositing method, along with their implementation and performance

on the Connection Machine CM-5, and networked workstations. This algorithm distri-

butes both _he data and the computations to individual processing units to achieve

fast, hlgh-quallty rendering of high-resolutlon data. The volume data, once dlstrl-

buted, is left intact. The processing nodes per£orm local raytracing of their sub-

volume concurrently. No communication between processing units is needed during

this locally ray-traclng process. A subimage is generated by each processing unit

and the final image is obtained by compositing subimages in the proper order, which

can be determined a priori. Test results on both the CM-5 and a group of networked

workstations demonstrate the practicality of our rendering algorithm and compositing

method.

14. SUBJECTTERMS

scientific visualization, massively parallel processing,

volume rendering, network computing

17. SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION
OF REPORT OF THIS PAGE

unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICECODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pres_lb_l by ANSi $_d z3g-18

U.. GOVERNMENT PRINTING OffICE:: 1993 - 928-064/860S0
._J$-102

t-

=

T

